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We adapt a finite difference method of solution of the two-dimensional massless Dirac equation, developed
in the context of lattice gauge theory, to the calculation of electrical conduction in a graphene sheet or on the
surface of a topological insulator. The discretized Dirac equation retains a single Dirac point �no “fermion
doubling”�, avoids intervalley scattering as well as trigonal warping, and preserves the single-valley time-
reversal symmetry �=symplectic symmetry� at all length scales and energies—at the expense of a nonlocal
finite difference approximation of the differential operator. We demonstrate the symplectic symmetry by cal-
culating the scaling of the conductivity with sample size, obtaining the logarithmic increase due to antilocal-
ization. We also calculate the sample-to-sample conductance fluctuations as well as the shot-noise power and
compare with analytical predictions.
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I. INTRODUCTION

The discovery of graphene1 has created a need for effi-
cient numerical methods to calculate transport properties of
massless Dirac fermions. The two-dimensional massless
Dirac equation �or Weyl equation� that governs the low-
energy and long-wavelength dynamics of conduction elec-
trons in graphene has a time-reversal symmetry called
symplectic—which is special because it squares to �1. �The
usual time-reversal symmetry, which squares to +1, is called
orthogonal.� The symplectic symmetry is at the origin of
some of the unusual transport properties of graphene,2–6 in-
cluding the absence of back scattering,7 weak
antilocalization,8 enhanced conductance fluctuations,9,10 and
absence of a metal-insulator transition.11,12

Numerical methods of solution can be divided into two
classes depending on whether they break or preserve the
symplectic symmetry. The tight-binding model of graphene,
with nearest-neighbor hopping on a honeycomb lattice,
breaks the symplectic symmetry by the two mechanisms of
intervalley scattering8 and trigonal warping.13 Intervalley
scattering couples the two flavors of Dirac fermions, corre-
sponding to the two different valleys �at opposite corners of
the Brillouin zone� in the graphene band structure, thereby
changing the symmetry class from symplectic to orthogonal.
Trigonal warping is a triangular distortion of the conical
band structure that breaks the momentum inversion symme-
try �+p→−p�, thereby effectively breaking time-reversal
symmetry in a single valley and changing the symmetry class
from symplectic to unitary.

Breaking of the symplectic symmetry eliminates both
weak antilocalization as well as the enhancement of the con-
ductance fluctuations and drives the system to an insulator
with increasing size or disorder.14,15 As observed in computer
simulations,16–18 the breaking of the symplectic symmetry
can be pushed to larger system sizes and larger disorder
strengths by reducing the lattice constant �at fixed correlation
length and fixed amplitude of the disorder potential�—but
this severely limits the computational efficiency.

The Chalker-Coddington network model,19–21 applied to
graphene in Ref. 22, has a single flavor of Dirac fermions, so

there is no intervalley scattering—but it still belongs to the
same class of methods that break the symplectic symmetry of
the massless Dirac equation. �The symplectic symmetry is
broken on short length scales by the Aharonov-Bohm phases
that appear in the mapping of the Dirac equation onto the
network model.�

Both the network model and the tight-binding model are
real-space regularizations of the Dirac equation with the
smallest length scale �the lattice constant� to cutoff the un-
bounded spectrum at large positive and large negative ener-
gies. There exists at present just one method to calculate
transport properties numerically while preserving the sym-
plectic symmetry, developed independently �and imple-
mented differently� in Refs. 11 and 12. That method �used
also in Refs. 23 and 24� is based on a momentum space
regularization with a cutoff of the Fourier-transformed Dirac
equation at some large value of momentum.

It is the purpose of the present paper to develop and
implement an alternative method of solution of the Dirac
equation that shares with the tight-binding and network mod-
els the convenience of a formulation in real space rather than
momentum space but without breaking the symplectic sym-
metry. A celebrated no-go theorem25 in lattice gauge theory
forbids any regularization of the Dirac equation with local
couplings from preserving symplectic symmetry. �The prob-
lematic role of intervalley scattering appears in that context
as the fermion doubling problem.� Several nonlocal finite
difference methods have been proposed to work around the
no-go theorem and we will adapt one of these �developed by
Stacey26 and by Bender et al.27� to the study of transport
properties.

The adaptation amounts to �1� the inclusion of a spatially
dependent electrostatic potential �which breaks the chiral
symmetry that played a central role in Refs. 26 and 27� and
�2� a proper discretization of the current operator �such that
the total current through any cross section is conserved�. We
implement the finite difference method to solve the scattering
problem of Dirac fermions in a disordered potential land-
scape connected to ballistic leads and compare our numerical
results for the scaling and statistics of conductance and shot-
noise power with analytical theories.9,10,28
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Our numerical method is relevant for electrical conduc-
tion in graphene under the assumption that the impurity po-
tential in the carbon monolayer is long ranged �so that inter-
valley scattering is suppressed� and weak �so that trigonal
warping can be neglected�. Massless Dirac fermions are also
expected to govern the electrical conduction along the sur-
face of a three-dimensional topological insulator29–31 �re-
cently realized in BiSb �Ref. 32��. In that case the symplectic
symmetry is preserved even for short-range scatterers, and
our numerical results should be applicable more generally.

II. FINITE DIFFERENCE REPRESENTATION
OF THE TRANSFER MATRIX

A. Dirac equation

We consider the two-dimensional massless Dirac equation

H� = E�, H = − i�v��x�x + �y�y� + U�r� , �2.1�

where v and E are the velocity and energy of the Dirac
fermions, U�x ,y� is the electrostatic potential landscape, and
��x ,y� is the two-component �spinor� wave function. The
two spinor components of � refer to the two atoms in the
unit cell in the application to graphene or to the two spin
degrees of freedom in the application to the surface of a
topological insulator. We note the symplectic symmetry of
the massless Dirac Hamiltonian

H = SHS−1 = �yH
��y . �2.2�

The time-reversal symmetry operator S= i�yC �with C as the
operator of complex conjugation� squares to �1. The chiral
symmetry �zH�z=−H is broken by a nonzero U, so it will
play no role in what follows. For later use we also note the
current operator

�jx, jy� = v��x,�y� . �2.3�

We consider a strip geometry of length L along the longi-
tudinal x direction and width W along the transversal y di-
rection. For the discretization we use a square lattice, xm
=m�, and yn=n�, with indices m=1,2 , . . . ,M �M =L /��
and n=1,2 , . . . ,N �N=W /��. In the applications we will
consider large aspect ratios W /L�1, for which the precise
choice of boundary conditions in the transverse direction
does not matter. We choose periodic boundary conditions,
yN+1�y1, since they preserve the symplectic symmetry. The
values �m,n=��xm ,yn� of the wave function at a lattice point
are collected into a set of N-component vectors �m
= ��m,1 ,�m,2 , . . . ,�m,N�T, one for each m=1,2 , . . . ,M.

The N�N transfer matrix Mm is defined by

�m+1 = Mm�m. �2.4�

Symplectic symmetry �2.2� of the Hamiltonian requires that
� and �y�

� are both solutions at the same energy E, so they
should both satisfy Eq. �2.4�. The corresponding condition
on the transfer matrix is

Mm = �yMm
� �y . �2.5�

The transfer matrix should conserve the total current through
any cross section of the strip. In terms of the �still to be

determined� discretized current operator Jx, this condition
reads ��m+1�Jx��m+1�= ��m�Jx��m�, which then corresponds
to the following condition on the transfer matrix:

Mm
† JxMm = Jx. �2.6�

Our problem is to discretize the differential operators in
Dirac Eq. �2.1�, as well as current operator �2.3�, in such a
way that the resulting transfer matrix describes a single fla-
vor of Dirac fermions and without violating the two condi-
tions �Eqs. �2.5� and �2.6�� of symplectic symmetry and cur-
rent conservation.

B. Discretization

A local replacement of the differential operators �x and �y
by finite differences either violates the Hermiticity of H �thus
violating the conservation of current� or breaks the symplec-
tic symmetry �by the mechanism of fermion doubling�. A
nonlocal finite difference method that preserves the Hermi-
ticity and symplectic symmetry of H was developed by
Stacey26 and by Bender et al.27 These authors considered the
case U=0 when both symplectic and chiral symmetries are
present. We extend their method to a spatially dependent U
�thereby breaking the chiral symmetry� and obtain the dis-
cretized transfer matrix and current operator.

Since the transfer matrix relates ��x ,y� at two different
values of x, it is convenient to isolate the derivative with
respect to x from Dirac Eq. �2.1�. Multiplication of both sides
by �i /�v��x gives

�x� = �− i�z�y − i�xV�� , �2.7�

with the definition V= �U−E� /�v. We can now make contact
with the discretization in Refs. 26 and 27 of the Dirac equa-
tion in one space and one time dimension, with x playing the
role of �imaginary� time and y being the spatial dimension.

The key step by which Refs. 26 and 27 avoid fermion
doubling is the evaluation of the finite differences on a lattice
that is displaced symmetrically from the original lattice. The
displaced lattice points �xm+� /2,yn+� /2� are indicated by
crosses in Fig. 1. On the displaced lattice, the differential
operators are discretized by

�x� →
1

2�
��m+1,n + �m+1,n+1 − �m,n − �m,n+1� , �2.8�

�y� →
1

2�
��m,n+1 + �m+1,n+1 − �m,n − �m+1,n� , �2.9�

and the potential term is replaced by

V� → 1
4Vm,n��m+1,n + �m+1,n+1 + �m,n + �m,n+1� ,

�2.10�

with Vm,n=V�xm+� /2,yn+� /2�. Dirac Eq. �2.7� is applied at
the points �xm+� /2,yn� �empty circles in Fig. 1� by averag-
ing the terms at the two adjacent points �xm
+� /2,yn�� /2�.

The resulting finite difference equation can be written in a
compact form with the help of the N�N tridiagonal matrices

TWORZYDŁO, GROTH, AND BEENAKKER PHYSICAL REVIEW B 78, 235438 �2008�

235438-2



J, K, and V�m� defined by the following nonzero elements:

Jn,n = 1, Jn,n+1 = Jn,n−1 = 1
2 , �2.11�

Kn,n+1 = 1
2 , Kn,n−1 = − 1

2 , �2.12�

Vn,n
�m� = 1

2 �Vm,n + Vm,n−1�, Vn,n+1
�m� = 1

2Vm,n,

Vn,n−1
�m� = 1

2Vm,n−1. �2.13�

In accordance with the periodic boundary conditions, the in-
dices n�1 should be evaluated modulo N. Notice that J and
V�m� are real symmetric matrices, while K is a real antisym-
metric. Furthermore J and K commute but neither matrix
commutes with V�m�.

For later use, we note that J has eigenvalues

jl = 2 cos2�	l/N�, l = 1,2, . . . ,N , �2.14�

corresponding to the eigenvectors 
�l� with elements


n
�l� = N−1/2 exp�2	iln/N� . �2.15�

The eigenvalues of K are

�l = i sin�2	l/N�, l = 1,2, . . . ,N �2.16�

for the same eigenvectors 
�l�. From Eq. �2.14� we see that
for even N there is a zero eigenvalue of J �at l=N /2�. To
avoid the complications from a noninvertible J, we restrict
ourselves to odd N �when all eigenvalues of J are nonzero�.

C. Transfer matrix

The discretized Dirac equation is expressed in terms of
matrices �2.11�–�2.13� by

1

2�
J��m+1 − �m� = 	−

i

2�
�zK −

i

4
�xV�m�
��m + �m+1� .

�2.17�

Rearranging Eq. �2.17� we arrive at Eq. �2.4� with the trans-
fer matrix

Mm = �J + i�zK + 1
2 i��xV�m��−1�J − i�zK − 1

2 i��xV�m�� .

�2.18�

Since we take odd N so that J is invertible, we may equiva-
lently write Eq. �2.18� in the more compact form

Mm =
1 − iXm

1 + iXm
, Xm = J−1��zK + 1

2��xV�m�� .

�2.19�

As announced, the transfer matrix is nonlocal �in the sense
that multiplication of �m by Mm couples all transverse co-
ordinates�.

One can readily check that condition �2.5� of symplectic
symmetry is fulfilled. In Appendix A we demonstrate that
condition �2.6� of current conservation holds if we define the
discretized current operator Jx in terms of the symmetric ma-
trix J,

Jx = 1
2v�xJ . �2.20�

The absence of fermion doubling is checked in Sec. IV A.
The transfer matrix M through the entire strip �from x

=0 to x=L� is the product of the one-step transfer matrices
Mm,

M = �
m=1

M

Mm, �2.21�

ordered such that Mm+1 is to the left of Mm. The properties
of symplectic symmetry and current conservation are pre-
served upon matrix multiplication.

D. Numerical stability

The repeated multiplication �2.21� of the one-step transfer
matrix to arrive at the transfer matrix of the entire strip is
unstable because it produces both exponentially growing and
exponentially decaying eigenvalues, and the limited numeri-
cal accuracy prevents one from retaining both sets of eigen-
values. We resolve this obstacle, following Refs. 11, 22, and
33, by converting the transfer matrix into a unitary matrix,
which has only eigenvalues of unit absolute value. The for-
mulas that accomplish this transformation are given in Ap-
pendix B.

III. FROM TRANSFER MATRIX TO SCATTERING
MATRIX AND CONDUCTANCE

A. General formulation

The scattering matrix is obtained from the transfer matrix
by connecting the two ends of the strip at x=0 and x=L to
semi-infinite ballistic leads. The N transverse modes in the
leads �calculated in Sec. IV� consist of N0 propagating modes
�l

� �labeled  for right moving and � for left moving� and
N−N0 evanescent modes �l

� �decaying for x→ ���. The
propagating modes are normalized such that each carries a
unit current.

Consider an incoming wave in mode l0 from the left. At
x=0, the sum of incoming, reflected, and evanescent waves
is given by

FIG. 1. Square lattice �filled circles� on which the wave function
� is discretized as �m,n. The finite differences are evaluated at the
displaced points indicated by crosses. Dirac Eq. �2.7� is applied at
the empty circles by taking the mean of the contributions from the
two adjacent crosses. The resulting finite difference equation de-
fines a transfer matrix in the x direction that conserves current and
preserves the symplectic symmetry.
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�l0
left = �l0

+ + �
l

rl,l0
�l

− + �
l

�l,l0
�l

−, �3.1�

while the sum of transmitted and evanescent waves at x=L is
given by

�l0
right = �

l

tl,l0
�l

+ + �
l

�l,l0
� �l

+. �3.2�

The N0�N0 reflection matrix r and transmission matrix t are
obtained by equating

�l0
right = M�l0

left, �3.3�

eliminating the coefficients � ,�� and repeating it for each of
the N0 propagating modes incident from the left. Starting
from a mode incident from the right, we similarly obtain the
reflection matrices r� and t�, which together with r and t
form a 2N0�2N0 unitary scattering matrix,

S = 	r t�

t r�

 . �3.4�

As a consequence of unitarity, the matrix products tt† and
t�t�† have the same set of eigenvalues T1 ,T2 , . . . ,TN0

called
transmission eigenvalues.

The number N0 of propagating modes in the leads is an
odd integer because of our choice of periodic boundary con-
ditions. The symplectic symmetry condition �2.5� then im-
plies that the transmission eigenvalues Tn consist of one unit
eigenvalue and �N0−1� /2 degenerate pairs �Kramers
degeneracy34�.

The conductance G follows from the transmission eigen-
values via the Landauer formula

G = G0�
n

Tn. �3.5�

The conductance quantum G0=4e2 /h in the application to
graphene �which has both spin and valley degeneracies�,
while G0=e2 /h in the application to the surface of a topo-
logical insulator. The Kramers degeneracy, which is present
in both applications, is accounted for in the sum over the
transmission eigenvalues.

B. Infinite wave-vector limit

Following Ref. 36, we model metal contacts by leads with
an infinitely large Fermi wave vector. In the infinite wave-
vector limit all modes in the leads are propagating, so N0
=N and the scattering matrix has a dimension 2N�2N. The
states �l

� �l=1,2 , . . . ,N� in this limit are simply the 2N
eigenstates of the current operator Jx, normalized such that
each carries the same current. In terms of the eigenvalues
and eigenvectors �2.14� and �2.15� of J we have

�l
� = jl

−1/2	 1

�1


�l�. �3.6�

Instead of the general Eqs. �3.1� and �3.2� we now have the
simpler equations

�l0
left = �l0

+ + �
l

rl,l0
�l

−, �l0
right = �

l

tl,l0
�l

+. �3.7�

To obtain from Eq. �3.3� a closed-form expression for S in
terms of M, we first perform the similarity transformation

M̃ = RMR−1, R = �HJ1/2, �3.8�

where �H is the Hadamard matrix,

�H = 2−1/2	1 1

1 − 1

 = �H

−1. �3.9�

The notation �HJ1/2 signifies a direct product, where �H acts
on the spinor degrees of freedom s=� and J1/2 acts on the
lattice degrees of freedom n=1,2 , . . . ,N. Notice that the ma-
trix R is Hermitian �since J is Hermitian with exclusively
positive eigenvalues, see Eq. �2.14��.

We separate the spinor degrees of freedom of M into four
N�N blocks,

M = 	M++ M+−

M−+ M−−
 , �3.10�

such that Mns,ms�=Mnm
ss�. The matrix M̃ has a corresponding

decomposition into submatrices M̃ss�. As one can verify by
substitution into Eq. �3.7� and comparison with Eq. �3.3�, the

submatrices M̃ss� are related to the transmission and reflec-
tion matrices by

r = − �M̃−−�−1M̃−+, �3.11a�

t = M̃++ − M̃+−�M̃−−�−1M̃−+, �3.11b�

t� = �M̃−−�−1, �3.11c�

r� = M̃+−�M̃−−�−1. �3.11d�

Similar formulas were derived in Ref. 22 but there the
transformation from M to S involved only a Hadamard ma-
trix and no matrix J because of the different current operator
in that model.

IV. BALLISTIC TRANSPORT

For a constant U we have ballistic transport through the
strip of length L and width W. In this section we check if we
can recover the known results35,36 for ballistic transport of
Dirac fermions from the discretized transfer matrix.

A. Dispersion relation

For U=U0=constant matrix �2.13� of discretized poten-
tials is given by V�m�=−�� /��J, with �= �E−U0�� /�v as the
dimensionless energy �measured relative to the Dirac point at
energy U0�. Substitution into Eq. �2.19� gives the
m-independent ballistic transfer matrix Mball,
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Mball =
1 + i��/2��x − iJ−1K�z

1 − i��/2��x + iJ−1K�z
. �4.1�

This is the one-step transfer matrix. The transfer matrix
through the entire strip, in this ballistic case, is simply M
= �Mball�M.

In accordance with Eqs. �2.14�–�2.16�, the matrix J−1K
can be diagonalized �for odd N� by

J−1K = F�F†, �nn� = i tan�	n/N��nn�, �4.2a�

Fnn� = N−1/2 exp�2	inn�/N� . �4.2b�

The Fourier-transformed transfer matrix FMballF† is diago-
nal in the mode index l=1,2 , . . . ,N. A 2�2 matrix structure
ml in the spin index remains, which is given by

ml =
1 + i��/2��x + tan�	l/N��z

1 − i��/2��x − tan�	l/N��z
. �4.3�

The eigenvalues and eigenvectors of ml are

mlul
� = e�ikul

�, ul
� = 	 �/2

i tan�	l/N� � tan�k/2�

 ,

�4.4�

with the dimensionless momentum k given as a function of �
and l by the dispersion relation

tan2�k/2� + tan2�	l/N� = ��/2�2. �4.5�

In Fig. 2 we have plotted dispersion relation �4.5� for two
different modes in the first Brillouin zone −	�k�	. For
each mode index l, there is one wave that propagates to
positive x �on the branch with d� /dk�0� and one wave that
propagates to negative x �on the branch with d� /dk�0�.

As anticipated,26,27 the discretization of the Dirac equation
on the displaced lattice �crosses in Fig. 1� has avoided the
spurious doubling of the fermion degrees of freedom that
would have happened if the finite differences would have
been calculated on the original lattice �solid dots in Fig. 1�.
In the low-energy and long-wavelength limit k ,�→0, the
conical dispersion relation �vpx�2+ �vpy�2= �E−U0�2 of Dirac

Eq. �2.1� is recovered. The longitudinal momentum is px
=�k /�, while the transverse momentum is py = �2	� /W�l if
l /N→0 or py =−�2	� /W��N− l� if l /N→1.

B. Evanescent modes

For ����2 tan�	 /N�, hence for �E−U0��2	�v /W, only
the mode with index l=N is propagating. The other N−1
modes are evanescent, that is to say, their wave number k has
a nonzero imaginary part �. There are two classes of evanes-
cent modes, one class with a purely imaginary wave number
k= i�+ and another class with a complex wave number k
=	+ i�−. The relation between �� and �, following from Eq.
�4.5�, is

tanh��+/2� = tan2�	l/N� − ��/2�2, �4.6a�

cotanh��−/2� = tan2�	l/N� − ��/2�2. �4.6b�

In Fig. 3 we have plotted Eq. �4.6� for different mode
indices, parametrized by �=tan�	l /N�. The evanescent
modes in the Dirac equation correspond to k= i�+ in the limit
�→0 �solid contours in Fig. 3�. The second “spurious” class
of evanescent modes, with k=	+ i�− �dashed contours�, is an
artifact of the discretization that appears for large transverse
momenta �����1 or N /4� l�3N /4�.

To minimize the effect of the spurious evanescent modes
we insert a pair of filters of length L0 between the strip of
length L and the leads with infinitely large Fermi wave vec-
tor. By choosing a large but finite Fermi wave vector in the
filters, they remove the spurious evanescent modes of large
transverse momenta which are excited by the infinite Fermi
wave vector in the leads.

The geometry is sketched in Fig. 4. In the filters we
choose U=0 and E=2�v /� �so �=2 in the filters�. Since
��−��	 /N for the spurious evanescent modes �described by
Eq. �4.6��, their longest decay length is of the order N�=W.
By choosing L0=10W we ensure that these modes are filtered
out.

FIG. 2. Dispersion relation �4.5� of the discretized Dirac equa-
tion plotted in the first Brillouin zone for two transverse modes �l
=N: solid curve; lN /4: dotted curve�. The dispersion relation
approaches that of the Dirac equation near the point �k ,��= �0,0�
and avoids fermion doubling at other points in the Brillouin zone.

FIG. 3. �Color online� Relation between the energy � and the
imaginary part � of the wave number of evanescent modes calcu-
lated from Eq. �4.6� for five different values of the mode index
�parametrized by �=tan�	l /N��. The real part of the wave number
equals 0 on the solid contours �corresponding to �+�, while it equals
	 on the dashed contours �corresponding to �−�. Only the �+ eva-
nescent modes have a correspondence to the Dirac equation in the
limit �→0. The �− evanescent modes that appear for ����1 are
artifacts of the discretization for large transverse momenta.
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C. Conductance

We have calculated the conductance at fixed Fermi energy
E=2�v /� as a function of the potential step height U0. Re-
sults are shown in Fig. 5 for aspect ratio W /L=3 and lattice
constant �=10−2L �solid curve� and compared with the so-
lution of the Dirac equation �dashed curve�. The agreement is
excellent �for a twice smaller � the two curves would have
been indistinguishable�.

The horizontal dotted line in Fig. 5 indicates the value35,36

lim
W/L→�

lim
U0→E

�L/W�G/G0 = 1/	 �4.7�

of the minimal conductivity at the Dirac point for a large
aspect ratio of the strip. The oscillations which develop as
one moves away from the Dirac point are Fabry-Perot reso-
nances from multiple reflections at x=0 and x=L. The filters
of length L0 are not present in the continuum calculation
�dashed curve�, but the close agreement with the lattice cal-
culation �solid curve� shows that the filters do not modify
these resonances in any noticeable way. The filters do play
an essential role in ensuring that the minimal conductivity
reaches its proper value �4.7�. Without the filters the lattice
calculation would give a twice larger minimal conductivity
due to the contribution from the spurious evanescent modes
of large transverse momentum.

V. TRANSPORT THROUGH DISORDER

We introduce disorder in the strip of length L by adding a
random potential �U to each lattice point, distributed uni-
formly in the interval �−�U ,�U�. Since our discretization
scheme conserves the symplectic symmetry exactly, there is
no need now to choose a finite correlation length for the
potential fluctuations �as in earlier numerical
studies11,12,16–18,22–24�. Instead we can let the potential of
each lattice point fluctuate independently, as in the original
Anderson model of localization.37

A. Scaling of conductance at the Dirac point

When U0=E the potential U0+�U in the strip fluctuates
around the Dirac point �see Fig. 6�. Results for the scaling of
the average conductivity ���L /W��G� with system size are
shown for different disorder strengths in Fig. 7. We averaged
over 3000 disorder realizations for L /�=17, 41, 99, and over
300 realizations for L /�=239. The aspect ratio was fixed at
W /L=3.

For sufficiently strong disorder strengths �U�3�v /� the
data follow the logarithmic scaling11,12

�/G0 = c ln�L/l���U�� . �5.1�

There is a consensus in the literature that c=1 /	 can be
calculated perturbatively28 as a weak antilocalization correc-

FIG. 4. Potential profile of a strip �length L� connected to leads
by a pair of filters �length L0�. The Fermi wave vector in the leads
is taken to be infinitely large; the finite Fermi wave vector in the
filters removes the spurious evanescent modes excited by the leads.

FIG. 5. �Color online� Solid curve: conductance in the geometry
of Fig. 4. The Fermi wave vector �E−U0� /�v in the strip of length
L and width W=3L is varied by varying the potential step height U0

at fixed Fermi energy E=2�v /�. The lattice constant �=10−2L.
Dashed curve: the result from the Dirac equation �calculated from
the formulas in Ref. 36� corresponding to the limit �→0. The
horizontal dotted line is the minimal conductivity at the Dirac point.

FIG. 6. Same as in Fig. 4 but now for the case where the po-
tential in the strip fluctuates around the Dirac point U=U0+�U,
with U0=E and �U uniformly distributed in the interval
�−�U ,�U�.

FIG. 7. �Color online� Scaling with system size of the average
conductivity ���L /W��G� in a disordered strip at the Dirac point
�geometry of Fig. 6�. The length L of the strip is varied at a fixed
aspect ratio of W /L=3. The data are collected for different disorder
strengths �U �listed in units of �v /��.
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tion. The quantity l� plays the role of a mean-free path de-
pendent on the disorder strength. We fit this scaling to our
data with a common fitting parameter c �disregarding the
data sets with low �U as being too close to the ballistic
limit�. The fitting gives l� for every data set with the same
�U.

The resulting single-parameter scaling is presented in Fig.
8 �including also the low �U sets, for completeness�. The
data sets collapse onto a single logarithmically increasing
conductivity with c0.33�1�, close to the expected value of
c=1 /	0.318. To assess the importance of finite-size
corrections38 we include a nonuniversal lattice-constant-
dependent term to the logarithmic scaling, � /G0
=c ln�L / l���U��+ f��U�� /L. We then find c0.316�5�,
which is again close to the expected value.28 These results
for the absence of localization of Dirac fermions are consis-
tent with earlier numerical calculations11,12 using a momen-
tum space regularization of the Dirac equation.

B. Conductance fluctuations at the Dirac point

The sample-to-sample conductance fluctuations at the
Dirac point were calculated numerically in Ref. 16 using the
tight-binding model on a honeycomb lattice. An enhance-
ment of the variance above the value for point scatterers was
observed and explained in Ref. 9 in terms of the absence of
intervalley scattering. A perturbative calculation9,10 of
var G= �G2�− �G�2 gives

var G =
3��3�

	3

W

L
G0

2, W/L � 1. �5.2�

Intervalley scattering would reduce the variance by a factor
of 4, while trigonal warping without intervalley scattering
would reduce the variance by a factor of 2.

In Fig. 9 we plot our results for the dependence of the
variance of the conductance on the rescaled system size L / l�,
with the �U dependence of l� obtained from the scaling
analysis of the average conductance in Sec. V A. The con-
vergence toward the expected value �5.2� is apparent. The
numerical data of Fig. 9 support the conclusion of Ref. 28
that the statistics of the conductance at the Dirac point can be
obtained from metallic diffusive perturbation theory in the
large-L limit.

The tight-binding model calculation of Ref. 16 only
reached about half the expected value �5.2� presumably be-
cause the potential was not quite smooth enough to avoid
intervalley scattering. This illustrates the power of the finite
difference method used here. We retain single-valley physics
even when the correlation length of the potential is equal to
the lattice constant.

C. Transport away from the Dirac point

The results of Secs. V A and V B are for potential fluc-
tuations around the Dirac point �U0=E�. In this section we
consider the average conductance and the conductance fluc-
tuations away from the Dirac point. We take �E−U0�
=0.8�v /� and vary the sample length L at a fixed aspect
ratio W /L=3. The resulting size dependence of the conduc-
tivity is presented in Fig. 10 for different disorder strengths
�U.

Since antilocalization is a relatively small quantum cor-
rection at these high Fermi energies, we are in the regime
described by the semiclassical Boltzmann equation.39,40 In
Appendix C we apply a general theory41 for the crossover
from ballistic to diffusive conduction to arrive at the formula

FIG. 8. �Color online� Dependence of the conductivity of Fig. 7
on the rescaled system length L / l���U�. The two dotted lines are
the analytical weak and strong disorder limits.

FIG. 9. �Color online� Same as in Fig. 8 but now for the vari-
ance of the conductance �instead of the ensemble average�. The
horizontal dotted line is the analytical prediction �5.2� var�G /G0�
=0.116W /L with W /L=3.

FIG. 10. �Color online� Crossover from ballistic to diffusive
conduction away from the Dirac point. The conductivity is plotted
versus system size at a fixed Fermi wave vector �E−U0� /�v
=0.8�−1 in the strip and a fixed aspect ratio of W /L=3. The data
are for different disorder strengths �U listed in units of �v /�. The
dotted curves are a fit to the semiclassical formula �5.3�, with the
transport mean-free path l0 as a fit parameter.
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�G� =
	

2
G0Nstrip

l0

L + 2l0
�5.3�

for the average conductance in terms of the transport mean-
free path l0 and the number Nstrip= �E−U0��W /	�v� of
propagating modes in the strip. From the fit of �G� versus L
in Fig. 10 we extract the dependence on �U of l0, and then
we use that information to investigate the scaling of the vari-
ance of the conductance with system size. As seen in Fig. 11,
the variance scales well toward the expected value �5.2�.

VI. CONCLUSION

In conclusion, we have presented in this paper what one
might call the “Anderson model for Dirac fermions.” Just as
in the original Anderson tight-binding model of
localization,37 our model is a tight-binding model on a lattice
with uncorrelated on-site disorder. Unlike the tight-binding
model of graphene �with nearest-neighbor hopping on a hon-
eycomb lattice�, our model preserves the symplectic symme-
try of the Dirac equation—at the expense of a nonlocal finite
difference approximation of the transfer matrix.

Our finite difference method is based on a discretization
scheme developed in the context of lattice gauge theory,26,27

with the purpose of resolving the fermion doubling problem.
We have adapted this scheme to include the chiral symmetry
breaking by a disorder potential and have cast it in a current-
conserving transfer-matrix form suitable for the calculation
of transport properties.

To test the validity and efficiency of the model, we have
calculated the average and the variance of the conductance
and compared with earlier numerical and analytical results.
We recover the logarithmic increase in the average conduc-
tance at the Dirac point found in numerical calculations that
use a momentum space rather than a real-space discretization
of the Dirac equation.11,12 The coefficient that multiplies the
logarithm is close to 1 /	, in agreement with analytical
expectations.28 The variance of the conductance is enhanced
by the absence of intervalley scattering, and we have been
able to confirm the scaling with increasing system size to-
ward the expected limit9,10—something which had not been

possible in earlier numerical calculations16 because interval-
ley scattering sets in before the large-system limit is reached.

Our calculations support the expectation28 that the statis-
tics of the conductance at the Dirac point scales toward that
of a diffusive metal in the large-system limit. This would
imply that the shot noise should scale toward a Fano factor
F=1 /3.43 Earlier numerical studies using the momentum
space discretization23 found a saturation at the smaller value
of F=0.295. Our own numerical results, shown in Fig. 12,
instead suggest a slow logarithmic increase toward the ex-
pected F=1 /3. More research on this particular quantity is
required for a conclusive answer.

We anticipate that the numerical method developed here
will be proven useful for the study of graphene with smooth
disorder potentials �produced, for example, by remote charge
fluctuations� since such potentials produce little intervalley
scattering. Intervalley scattering is absent by construction in
the metallic surface states of topological insulators �such as
BiSb �Ref. 32��. These surface states might be studied by
starting from a three-dimensional tight-binding model, but
we would expect a two-dimensional formulation as presented
here to be more efficient.
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APPENDIX A: CURRENT-CONSERVING
DISCRETIZATION OF THE CURRENT OPERATOR

We seek a discretization of current operator �2.3� that sat-
isfies condition �2.6� of current conservation. Substitution of
expression �2.19� into condition �2.6� gives the requirement

Jx
−1Mm

† Jx = Mm
−1 ⇔ Jx

−1Xm
† Jx = Xm. �A1�

The requirement that Eq. �A1� holds for any choice of po-
tential fixes discretization �2.20� of the current operator �up

FIG. 11. �Color online� Same as in Fig. 10 but now for the
variance of the conductance. The data are plotted as a function of
the rescaled sample size using the values of the mean-free path
obtained from the fit of the conductance. The horizontal dotted line
is the analytical prediction �5.2�.

FIG. 12. �Color online� Scaling with system size of the Fano
factor �average shot-noise power divided by average current� in a
disordered strip at the Dirac point �geometry of Fig. 6�. The length
L of the strip is varied at a fixed aspect ratio of W /L=3. The data
are collected for different disorder strengths �U �listed in units of
�v /��. The dotted horizontal line is the value F=1 /3 for a diffusive
metal. The dotted curve is a fit to F=1 /3+a�b+ln�L / l���−1, in-
cluded in order to indicate a possible scaling toward the expected
value.
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to a multiplicative constant, which follows from continuum
limit �2.3��.

This is an appropriate point to note that current conserva-
tion could not have been achieved if the potential would
have been discretized in a way that would have resulted in a
nonsymmetric matrix Vm. For example, if instead of Eq.
�2.10� we would have chosen

V� → 1
4 �Ṽm+1,n�m+1,n + Ṽm+1,n+1�m+1,n+1 + Ṽm,n�m,n

+ Ṽm,n+1�m,n+1� , �A2�

with Ṽm,n=V�xm ,yn�, then the corresponding matrix Vm
would have been asymmetric and no choice of Jx could have
satisfied Eq. �A1�.

APPENDIX B: STABLE MULTIPLICATION
OF TRANSFER MATRICES

To perform multiplication �2.21� of transfer matrices in a
stable way �avoiding exponentially growing and decaying
eigenvalues�, we use the current conservation relation �2.6�
to convert the product into a composition of unitary matrices
�involving only eigenvalues of unit absolute value�. The
same method was used in Refs. 11, 22, and 33 but for a
different current operator, so the required transformation for-
mulas need to be adapted.

We separate the spinor degrees of freedom s=� of the
transfer matrix Mm into four N�N blocks,

Mm = 	Mm
++ Mm

+−

Mm
−+ Mm

−−
 . �B1�

The current conservation relation �2.6� with current operator
�2.20� can be written in the canonical form

M̃m
† 	1 0

0 − 1

M̃m = 	1 0

0 − 1

 �B2�

in terms of a matrix M̃m related to Mm by a similarity
transformation

M̃m = RMmR−1, R = 2−1/2	J1/2 J1/2

J1/2 − J1/2
 . �B3�

Equation �B2� follows only from Eqs. �2.6� and �2.20� if the
matrix R is Hermitian, which is the case here since J is a
Hermitian with only positive eigenvalues �see Eq. �2.14��.

It now follows directly from Eq. �2.6� that the matrix Um

constructed from M̃m by

M̃m = 	a b

c d

 ⇔ Um = 	 − d−1c d−1

a − bd−1c bd−1 
 �B4�

is a unitary matrix. Matrix multiplication of M̃m’s induces a
nonlinear composition of Um’s,

M̃1M̃2 ⇔ U1 � U2, �B5�

defined by

	A1 B1

C1 D1

 � 	A2 B2

C2 D2

 = 	A3 B3

C3 D3

 , �B6a�

A3 = A1 + B1�1 − A2D1�−1A2C1, �B6b�

B3 = B1�1 − A2D1�−1B2, �B6c�

C3 = C2�1 − D1A2�−1C1, �B6d�

D3 = D2 + C2�1 − D1A2�−1D1B2. �B6e�

To evaluate product �2.21� of Mm’s in a stable way, we first

write it in terms of the matrices M̃m,

M = R−1	�
m=1

M

M̃m
R . �B7�

We then transform each transfer matrix M̃m into a unitary
matrix Um according to Eq. �B4�, and we compose the uni-
tary matrices according to Eq. �B6�. Each step in this calcu-
lation is numerically stable.

At the end of the calculation, we may in principle trans-
form back from the final unitary matrix U to the transfer

matrix M=R−1M̃R by means of the inverse of relation
�B4�,

U = 	A B

C D

 ⇔ M̃ = 	C − DB−1A DB−1

− B−1A B−1 
 . �B8�

This inverse transformation is itself unstable, but we may
avoid it because �as we can see by comparing Eqs. �B4� and
�B8� with Eq. �3.11�� the final U is identical to the scattering
matrix S between leads in the infinite wave-vector limit.
Hence the conductance can be directly obtained from U via
the Landauer formula �3.5� �with the Tn’s being the eigenval-
ues of BB† and CC†�.

APPENDIX C: CROSSOVER FROM BALLISTIC
TO DIFFUSIVE CONDUCTION

Away from the Dirac point �for Fermi wave vectors kF
= �E−U0� /�v in the strip that are large compared to 1 /L�,
conduction through the strip is via propagating rather than
evanescent modes. If the number Nstrip=kFW /	 of propagat-
ing modes is �1, the semiclassical Boltzmann equation can
be used to calculate the conductance.

As the transport mean-free path l0 is reduced by adding
disorder to the strip, the conduction crosses over from the
ballistic to the diffusive regime. How to describe this cross-
over is a well-known problem in the context of radiative
transfer.41 An exact solution of the Boltzmann equation does
not provide a closed-form expression for the crossover, but
the following formula has been found to be accurate within a
few percent:

�G� = CdG0Nstrip
l0

L + 2�
. �C1�
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The coefficient Cd depends on the dimensionality d: C3
=4 /3, C2=	 /2, and C1=2. The length � is the so-called
extrapolation length of radiative transfer theory, which is
equal to l0 times a numerical coefficient that depends on the

reflectivity of the interface at x=0 and x=L. An infinite po-
tential step in the Dirac equation has �= l0, see Ref. 42. Sub-
stitution into Eq. �C1� then gives formula �5.3� used in the
text.
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